Brain Stem Glucose Hypermetabolism in Amyotrophic Lateral Sclerosis/Frontotemporal Dementia and Shortened Survival: An 18F-FDG PET/MRI Study

19Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.
Get full text

Abstract

A few 18F-FDG PET/CT studies have revealed the presence of brain hypermetabolism in the brain stem and cervical spinal cord of patients within the amyotrophic lateral sclerosis/frontotemporal dementia (ALS/ FTD) continuum. We aimed to investigate this finding through a hybrid PET/MRI system, allowing amore precise depiction of the spatial pattern of metabolic changes in the brain stem and cervical spinal cord. Methods: Twenty-eight patients with a diagnosis of ALS or a diagnosis of the behavioral variant of FTD plus motoneuron disease, as well as 13 control subjects, underwent 18F-FDG PET/MRI. Mean normalized 18F-FDG uptake in the midbrain/pons, medulla oblongata, and cervical spinal cord as defined on the individual's MRI scans were compared between groups. Furthermore, the associations between regional 18F-FDG uptake and clinical and demographic characteristics - including gene mutation, type of onset (bulbar, spinal, dementia), and clinical characteristics - were investigated. Results: A significant (P < 0.005) increment in glucose metabolism in the midbrain/pons and medulla oblongata was found in ALS/FTD patients (spinal-ALS and FTD-motor neuron disease subgroups) in comparison to controls. No relevant associations between clinical and metabolic features were reported, although medulla oblongata hypermetabolism was associated with shortened survival (P < 0.001). Conclusion: Increased glucose metabolism in the brain stem might be due to neuroinflammation, one of the key steps in the pathogenic cascade that leads to neurodegeneration in ALS/FTD. 18F-FDG PET/MRI could be a valuable tool to assess glial changes in the ALS/FTD spectrum and could serve as a prognostic biomarker. Large prospective initiatives would likely shed more light on the promising application of PET/MRI in this setting.

Cite

CITATION STYLE

APA

Zanovello, M., Sorarù, G., Campi, C., Anglani, M., Spimpolo, A., Berti, S., … Cecchin, D. (2022). Brain Stem Glucose Hypermetabolism in Amyotrophic Lateral Sclerosis/Frontotemporal Dementia and Shortened Survival: An 18F-FDG PET/MRI Study. Journal of Nuclear Medicine, 63(5), 777–784. https://doi.org/10.2967/jnumed.121.262232

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free