This paper attempts to describe an effective method for producing a composite of quantum dots consisting of CdSe (core) with CdS (shell). This nanoparticles composite was synthesized from modified organometallic precursors. The sizes of the nanoparticles were estimated from X-ray diffraction data using Debye-Scherer formula and compared with high resolution electron microscopy (HRTEM) and optical spectra. The shape of CdSe/CdS NPs is nearly spherical and revels that the CdS shell with the thickness ∼0.6 nm almost fully covers the CdSe core (higher contrast). Using UV-Vis spectroscopy, a systematic red shift in the absorption and emission spectra was observed after the deposition of CdS which confirms the shell growth over the CdSe core. In the CdSe/CdS core/shell structure, the holes are confined to the core, while the electrons are delocalized as a result of similar electron affinities of the core and the shell. The increased time of synthesis resulted in shell thickness increase. The observed properties of prepared CdSe/CdS QDs demonstrate the capability of the nanocomposite for using in the optoelectronics and photonics devices.
CITATION STYLE
Gadalla, A., El-Sadek, M. S. A., & Hamood, R. (2019). Synthesis and optical properties of CdSe/CdS core/shell nanocrystals. Materials Science- Poland, 37(2), 149–157. https://doi.org/10.2478/msp-2019-0034
Mendeley helps you to discover research relevant for your work.