Disruption of IGF-1R signaling by a novel quinazoline derivative, HMJ-30, inhibits invasiveness and reverses epithelial-mesenchymal transition in osteosarcoma U-2 OS cells

11Citations
Citations of this article
12Readers
Mendeley users who have this article in their library.

Abstract

Osteosarcoma is the most common primary malignancy of the bone and is characterized by local invasion and distant metastasis. Over the past 20 years, long-term outcomes have reached a plateau even with aggressive therapy. Overexpression of insulin-like growth factor 1 receptor (IGF-1R) is associated with tumor proliferation, invasion and migration in osteosarcoma. In the present study, our group developed a novel quinazoline derivative, 6-fluoro-2-(3-fluorophenyl)- 4-(cyanoanilino)quinazoline (HMJ-30), in order to disrupt IGF-1R signaling and tumor invasiveness in osteosarcoma U-2 OS cells. Molecular modeling, immune-precipitation, western blotting and phosphorylated protein kinase sandwich ELISA assays were used to confirm this hypothesis. The results demonstrated that HMJ-30 selectively targeted the ATP-binding site of IGF-1R and inhibited its downstream phosphoinositide 3-kinase/protein kinase B, Ras/mitogenactivated protein kinase, and I?K/nuclear factor-κB signaling pathways in U-2 OS cells. HMJ-30 inhibited U-2 OS cell invasion and migration and downregulated protein levels and activities of matrix metalloproteinase (MMP)-2 and MMP-9. An increase in protein levels of tissue inhibitor of metalloproteinase (TIMP)-1 and TIMP-2 was also observed. Furthermore, HMJ-30 caused U-2 OS cells to aggregate and form tight clusters, and these cells were flattened, less elongated and displayed cobblestone-like shapes. There was an increase in epithelial markers and a decrease in mesenchymal markers, indicating that the cells underwent the reverse epithelial-mesenchymal transition (EMT) process. Overall, these results demonstrated the potential molecular mechanisms underlying the effects of HMJ-30 on invasiveness and EMT in U-2 OS cells, suggesting that this compound deserves further investigation as a potential anti-osteosarcoma drug.

Cite

CITATION STYLE

APA

Chiu, Y. J., Hour, M. J., Jin, Y. A., Lu, C. C., Tsai, F. J., Chen, T. L., … Yang, J. S. (2018). Disruption of IGF-1R signaling by a novel quinazoline derivative, HMJ-30, inhibits invasiveness and reverses epithelial-mesenchymal transition in osteosarcoma U-2 OS cells. International Journal of Oncology, 52(5), 1465–1478. https://doi.org/10.3892/ijo.2018.4325

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free