Background: Anesthetic preconditioning (APC) of the myocardium is mediated in part by reversible alteration of mitochondrial function. Nitric oxide (NO) inhibits mitochondrial respiration and may mediate APC-induced cardioprotection. In this study, the effects of isoflurane on different states of mitochondrial respiration during the oxidation of complex I-linked substrates and the role of NO were investigated. Methods: Mitochondria were isolated from Sprague-Dawley rat hearts. Respiration rates were measured polarographically at 28C with a computer-controlled Clark-Type O2 electrode in the mitochondria (0.5 mg/mL) with complex I substrates glutamate/malate (5 mM). Isoflurane (0.25 mM) was administered before or after adenosine diphosphate (ADP)-initiated state 3 respiration. The NO synthase (NOS) inhibitor L-N5-(1-iminoethyl)-ornithine (L-NIO, 10 μM) and the NO donor S-nitroso-N-Acetylpenicillamine (SNAP, 1 μM) were added before or after the addition of ADP. Results: Isoflurane administered in state 2 increased state 2 respiration and decreased state 3 respiration. This attenuation of state 3 respiration by isoflurane was similar when it was given during state 3. L-NIO did not alter mitochondrial respiration or the effect of isoflurane. SNAP only, added in state 3, decreased state 3 respiration and enhanced the isoflurane-induced attenuation of state 3 respiration. Conclusion: Isoflurane has clearly distinguishable effects on different states of mitochondrial respiration during the oxidation of complex I substrates. The uncoupling effect during state 2 respiration and the attenuation of state 3 respiration may contribute to the mechanism of APC-induced cardioprotection. These effects of isoflurane do not depend on endogenous mitochondrial NO, as the NOS inhibitor L-NIO did not alter the effects of isoflurane on mitochondrial respiration.
CITATION STYLE
Xu, F., Qiao, S., Li, H., Deng, Y., Wang, C., & An, J. (2018). The effect of mitochondrial complex I-Linked respiration by isoflurane is independent of mitochondrial nitric oxide production. CardioRenal Medicine, 8(2), 113–122. https://doi.org/10.1159/000485936
Mendeley helps you to discover research relevant for your work.