Harnessing the evolutionary information on oxygen binding proteins through Support Vector Machines based modules

5Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Objectives: The arrival of free oxygen on the globe, aerobic life is becoming possible. However, it has become very clear that the oxygen binding proteins are widespread in the biosphere and are found in all groups of organisms, including prokaryotes, eukaryotes as well as in fungi, plants, and animals. The exponential growth and availability of fresh annotated protein sequences in the databases motivated us to develop an improved version of "Oxypred" for identifying oxygen-binding proteins. Results: In this study, we have proposed a method for identifying oxy-proteins with two different sequence similarity cutoffs 50 and 90%. A different amino acid composition based Support Vector Machines models was developed, including the evolutionary profiles in the form position-specific scoring matrix (PSSM). The fivefold cross-validation techniques were applied to evaluate the prediction performance. Also, we compared with existing methods, which shows nearly 97% recognition, but, our newly developed models were able to recognize almost 99.99 and 100% in both oxy-50 and 90% similarity models respectively. Our result shows that our approaches are faster and achieve a better prediction performance over the existing methods. The web-server Oxypred2 was developed for an alternative method for identifying oxy-proteins with more additional modules including PSSM, available at http://bioinfo.imtech.res.in/servers/muthu/oxypred2/home.html.

Cite

CITATION STYLE

APA

Muthukrishnan, S., & Puri, M. (2018). Harnessing the evolutionary information on oxygen binding proteins through Support Vector Machines based modules. BMC Research Notes, 11(1). https://doi.org/10.1186/s13104-018-3383-9

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free