Parameterized Correlation Clustering in Hypergraphs and Bipartite Graphs

13Citations
Citations of this article
34Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Motivated by applications in community detection and dense subgraph discovery, we consider new clustering objectives in hypergraphs and bipartite graphs. These objectives are parameterized by one or more resolution parameters in order to enable diverse knowledge discovery in complex data. For both hypergraph and bipartite objectives, we identify relevant parameter regimes that are equivalent to existing objectives and share their (polynomial-time) approximation algorithms. We first show that our parameterized hypergraph correlation clustering objective is related to higher-order notions of normalized cut and modularity in hypergraphs. It is further amenable to approximation algorithms via hyperedge expansion techniques. Our parameterized bipartite correlation clustering objective generalizes standard unweighted bipartite correlation clustering, as well as the bicluster deletion problem. For a certain choice of parameters it is also related to our hypergraph objective. Although in general it is NP-hard, we highlight a parameter regime for the bipartite objective where the problem reduces to the bipartite matching problem and thus can be solved in polynomial time. For other parameter settings, we present several approximation algorithms using linear program rounding techniques. These results allow us to introduce the first constant-factor approximation for bicluster deletion, the task of removing a minimum number of edges to partition a bipartite graph into disjoint bi-cliques. In several experimental results, we highlight the flexibility of our framework and the diversity of results that can be obtained in different parameter settings. This includes clustering bipartite graphs across a range of parameters, detecting motif-rich clusters in an email network and a food web, and forming clusters of retail products in a product review hypergraph, that are highly correlated with known product categories.

Cite

CITATION STYLE

APA

Veldt, N., Wirth, A., & Gleich, D. F. (2020). Parameterized Correlation Clustering in Hypergraphs and Bipartite Graphs. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 1868–1876). Association for Computing Machinery. https://doi.org/10.1145/3394486.3403238

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free