Mitochondria-targeted alginate/triphenylphosphonium-grafted-chitosan for treatment of hepatocellular carcinoma

24Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

Abstract

Mitochondrial targeting of anticancer drugs can effectively eradicate chemotherapy-refractory cells through different mechanisms. This work presents the rational designing of mitochondria-targeted core-shell polymeric nanoparticles (NPs) for efficient delivery of doxorubicin (DOX) to the hepatic carcinoma mitochondria. DOX was electrostatically nano-complexed with sodium alginate (SAL) then coated with mitotropic triphenylphosphonium-grafted chitosan (TPP+-g-CS) nanoshell. Polyvinyl alcohol (PVA) was co-solubilized into the TPP+-g-CS solution to enhance the stability of the developed NPs. The optimum NPs formula is composed of TPP+-g-CS (0.05% w/v) coating a DOX-SAL core complex (0.05% w/v), with 0.2% PVA relative to CS (w/w). The optimum NPs attained an entrapment efficiency of 63.33 ± 10.18%; exhibited a spherical shape with particle size of 70-110 nm and a positive surface charge which enhances mitochondrial uptake. FTIR and DSC studies results were indicative of an efficacious poly-complexation. In vitro biological experiments proved that the developed mitotropic NPs exhibited a significantly lower IC50, effectively induced apoptotic cell death and cell cycle arrest. Moreover, the in vivo studies demonstrated an enhanced antitumor bioactivity for the mitotropic NPs along with a reduced biological toxicity profile. In conclusion, this study proposes a promising nanocarrier system for the efficient targeting of DOX to the mitochondria of hepatic tumors.

Cite

CITATION STYLE

APA

Arafa, K. K., Hamzawy, M. A., Mousa, S. A., & El-Sherbiny, I. M. (2022). Mitochondria-targeted alginate/triphenylphosphonium-grafted-chitosan for treatment of hepatocellular carcinoma. RSC Advances, 12(34), 21690–21703. https://doi.org/10.1039/d2ra03240f

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free