Control of Enzyme Reactivity in Response to Osmotic Pressure Modulation Mimicking Dynamic Assembly of Intracellular Organelles

28Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In response to variations in osmotic stress, in particular to hypertonicity associated with biological dysregulations, cells have developed complex mechanisms to release their excess water, thus avoiding their bursting and death. When water is expelled, cells shrink and concentrate their internal bio(macro)molecular content, inducing the formation of membraneless organelles following a liquid–liquid phase separation (LLPS) mechanism. To mimic this intrinsic property of cells, functional thermo-responsive elastin-like polypeptide (ELP) biomacromolecular conjugates are herein encapsulated into self-assembled lipid vesicles using a microfluidic system, together with polyethylene glycol (PEG) to mimic cells’ interior crowded microenvironment. By inducing a hypertonic shock onto the vesicles, expelled water induces a local increase in concentration and a concomitant decrease in the cloud point temperature (Tcp) of ELP bioconjugates that phase separate and form coacervates mimicking cellular stress-induced membraneless organelle assemblies. Horseradish peroxidase (HRP), as a model enzyme, is bioconjugated to ELPs and is locally confined in coacervates as a response to osmotic stress. This consequently increases local HRP and substrate concentrations and accelerates the kinetics of the enzymatic reaction. These results illustrate a unique way to fine-tune enzymatic reactions dynamically as a response to a physiological change in isothermal conditions.

Cite

CITATION STYLE

APA

Schvartzman, C., Zhao, H., Ibarboure, E., Ibrahimova, V., Garanger, E., & Lecommandoux, S. (2023). Control of Enzyme Reactivity in Response to Osmotic Pressure Modulation Mimicking Dynamic Assembly of Intracellular Organelles. Advanced Materials, 35(33). https://doi.org/10.1002/adma.202301856

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free