Abstract
Named Entity recognition (NER) is an important part of many natural language processing tasks. Current approaches often employ machine learning techniques and require supervised data. However, many languages lack such resources. This paper presents an (almost) unsupervised learning algorithm for automatic discovery of Named Entities (NEs) in a resource free language, given a bilingual corpora in which it is weakly temporally aligned with a resource rich language. NEs have similar time distributions across such corpora, and often some of the tokens in a multi-word NE are transliterated. We develop an algorithm that exploits both observations iteratively. The algorithm makes use of a new, frequency based, metric for time distributions and a resource free discriminative approach to transliteration. Seeded with a small number of transliteration pairs, our algorithm discovers multi-word NEs, and takes advantage of a dictionary (if one exists) to account for translated or partially translated NEs. We evaluate the algorithm on an English-Russian corpus, and show high level of NEs discovery in Russian. © 2006 Association for Computational Linguistics.
Cite
CITATION STYLE
Klementiev, A., & Roth, D. (2006). Weakly supervised named entity transliteration and discovery from multilingual comparable corpora. In COLING/ACL 2006 - 21st International Conference on Computational Linguistics and 44th Annual Meeting of the Association for Computational Linguistics, Proceedings of the Conference (Vol. 1, pp. 817–824). Association for Computational Linguistics (ACL). https://doi.org/10.3115/1220175.1220278
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.