Canopy structure drives orangutan habitat selection in disturbed Bornean forests

42Citations
Citations of this article
254Readers
Mendeley users who have this article in their library.

Abstract

The conservation of charismatic and functionally important large species is becoming increasingly difficult. Anthropogenic pressures continue to squeeze available habitat and force animals into degraded and disturbed areas. Ensuring the long-term survival of these species requires a well-developed understanding of how animals use these new landscapes to inform conservation and habitat restoration efforts. We combined 3 y of highly detailed visual observations of Bornean orangutans with high-resolution airborne remote sensing (Light Detection and Ranging) to understand orangutan movement in disturbed and fragmented forests of Malaysian Borneo. Structural attributes of the upper forest canopy were the dominant determinant of orangutan movement among all age and sex classes, with orangutans more likely to move in directions of increased canopy closure, tall trees, and uniform height, as well as avoiding canopy gaps and moving toward emergent crowns. In contrast, canopy vertical complexity (canopy layering and shape) did not affect movement. Our results suggest that although orangutans do make use of disturbed forest, they select certain canopy attributes within these forests, indicating that not all disturbed or degraded forest is of equal value for the long-term sustainability of orangutan populations. Although the value of disturbed habitats needs to be recognized in conservation plans for wide-ranging, large-bodied species, minimal ecological requirements within these habitats also need to be understood and considered if long-term population viability is to be realized.

Cite

CITATION STYLE

APA

Davies, A. B., Ancrenaz, M., Oram, F., & Asner, G. P. (2017). Canopy structure drives orangutan habitat selection in disturbed Bornean forests. Proceedings of the National Academy of Sciences of the United States of America, 114(31), 8307–8312. https://doi.org/10.1073/pnas.1706780114

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free