A multi-frame super-resolution method based on the variable-exponent nonlinear diffusion regularizer

20Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In this work, the authors have proposed a multi-frame super-resolution method that is based on the diffusion-driven regularization functional. The new regularizer contains a variable exponent that adaptively regulates its diffusion mechanism depending upon the local image features. In smooth regions, the method favors linear isotropic diffusion, which removes noise more effectively and avoids unwanted artifacts (blocking and staircasing). Near edges and contours, diffusion adaptively and significantly diminishes, and since noise is hardly visible in these regions, an image becomes sharper and resolute—with noise being largely reduced in flat regions. Empirical results from both simulated and real experiments demonstrate that our method outperforms some of the state-of-the-art classical methods based on the total variation framework.

Cite

CITATION STYLE

APA

Maiseli, B. J., Elisha, O. A., & Gao, H. (2015). A multi-frame super-resolution method based on the variable-exponent nonlinear diffusion regularizer. Eurasip Journal on Image and Video Processing, 2015(1). https://doi.org/10.1186/s13640-015-0077-2

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free