Systems neuroplasticity in the aging brain: Recruiting additional neural resources for successful motor performance in elderly persons

428Citations
Citations of this article
553Readers
Mendeley users who have this article in their library.

Abstract

Functional imaging studies have shown that seniors exhibit more elaborate brain activation than younger controls while performing motor tasks. Here, we investigated whether this age-related overactivation reflects compensation or dedifferentiation mechanisms. "Compensation" refers to additional activation that counteracts age-related decline of brain function and supports successful performance, whereas "dedifferentiation" reflects age-related difficulties in recruiting specialized neural mechanisms and is not relevant to task performance. To test these predictions, performance on a complex interlimb coordination task was correlated with brain activation. Findings revealed that coordination resulted in activation of classical motor coordination regions, but also higher-level sensorimotor regions, and frontal regions in the elderly. Interestingly, a positive correlation between activation level in these latter regions and motor performance was observed in the elderly. This performance enhancing additional recruitment is consistent with the compensation hypothesis and characterizes neuroplasticity at the systems level in the aging brain. Copyright © 2008 Society for Neuroscience.

Cite

CITATION STYLE

APA

Heuninckx, S., Wenderoth, N., & Swinnen, S. P. (2008). Systems neuroplasticity in the aging brain: Recruiting additional neural resources for successful motor performance in elderly persons. Journal of Neuroscience, 28(1), 91–99. https://doi.org/10.1523/JNEUROSCI.3300-07.2008

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free