Model-Based Distance Sampling

31Citations
Citations of this article
144Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Conventional distance sampling adopts a mixed approach, using model-based methods for the detection process, and design-based methods to estimate animal abundance in the study region, given estimated probabilities of detection. In recent years, there has been increasing interest in fully model-based methods. Model-based methods are less robust for estimating animal abundance than conventional methods, but offer several advantages: they allow the analyst to explore how animal density varies by habitat or topography; abundance can be estimated for any sub-region of interest; they provide tools for analysing data from designed distance sampling experiments, to assess treatment effects. We develop a common framework for model-based distance sampling, and show how the various model-based methods that have been proposed fit within this framework.

Cite

CITATION STYLE

APA

Buckland, S. T., Oedekoven, C. S., & Borchers, D. L. (2016). Model-Based Distance Sampling. Journal of Agricultural, Biological, and Environmental Statistics, 21(1), 58–75. https://doi.org/10.1007/s13253-015-0220-7

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free