Abstract
Owing to its lightweight and excellent shock-absorbing properties, aluminum foam is used in automotive parts and construction materials. If a nondestructive quality assurance method can be established, the application of aluminum foam will be further expanded. In this study, we attempted to estimate the plateau stress of aluminum foam via machine learning (deep learning) using X-ray computed tomography (CT) images of aluminum foam. The plateau stresses estimated by machine learning and those actually obtained using the compression test were almost identical. Consequently, it was shown that plateau stress can be estimated by training using the two-dimensional cross-sectional images obtained nondestructively via X-ray CT imaging.
Author supplied keywords
Cite
CITATION STYLE
Hangai, Y., Ozawa, S., Okada, K., Tanaka, Y., Amagai, K., & Suzuki, R. (2023). Machine Learning Estimation of Plateau Stress of Aluminum Foam Using X-ray Computed Tomography Images. Materials, 16(5). https://doi.org/10.3390/ma16051894
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.