Charge density wave transition in single-layer titanium diselenide

Citations of this article
Mendeley users who have this article in their library.


A single molecular layer of titanium diselenide (TiSe2) is a promising material for advanced electronics beyond graphene - a strong focus of current research. Such molecular layers are at the quantum limit of device miniaturization and can show enhanced electronic effects not realizable in thick films. We show that single-layer TiSe2 exhibits a charge density wave (CDW) transition at critical temperature TC =232±5 K, which is higher than the bulk TC =200±5 K. Angle-resolved photoemission spectroscopy measurements reveal a small absolute bandgap at room temperature, which grows wider with decreasing temperature T below TC in conjunction with the emergence of (2 × 2) ordering. The results are rationalized in terms of first-principles calculations, symmetry breaking and phonon entropy effects. The observed Bardeen-Cooper-Schrieffer (BCS) behaviour of the gap implies a mean-field CDW order in the single layer and an anisotropic CDW order in the bulk.




Chen, P., Chan, Y. H., Fang, X. Y., Zhang, Y., Chou, M. Y., Mo, S. K., … Chiang, T. C. (2015). Charge density wave transition in single-layer titanium diselenide. Nature Communications, 6.

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free