Abstract
The prodigious advances in robotics in recent times made the use of robots more present in modern society. One important advance that requires special attention is the development of an unmanned aerial vehicle (UAV), which allows an aircraft to fly without having a human crew on board, although the UAVs still need to be controlled by a pilot or a navigator. Today’s UAVs often combine remote control and computerized automation in a manner that built-in control and/or guidance systems perform deeds like speed control and flightpath stabilization. In this sense, existing UAVs are not truly autonomous, mostly because air-vehicle autonomy field is a recently emerging field, and this could be a bottleneck for future UAV development. It could be said that the ultimate goal in the autonomy technology development is to replace human pilots by altering machines decisions in order to make decisions like humans do. For this purpose, several tools related with artificial intelligence could be employed such as expert systems, neural networks, machine learning and natural language processing (HAYKIN, 2009). Nowadays, the field of autonomy has mostly been following a bottom-up approach, such as hierarchical control systems (SHIM, 2000). One interesting methodology from the hierarchical control systems approach is the subsumption architecture that decomposes complicated intelligent behavior into many “simple” behavior modules, which are organized into layers. Each layer implements a particular goal and higher layers are increasingly more abstract. The decisions are not taken by a superior layer, but by listening to the information that are triggered by sensory inputs (lowest layer). This methodology allows the use of reinforcement learning to acquire behavior with the information that comes with experience. Inspired by old behaviorist psychology, reinforcement learning (RL) concerned with how an agent ought to take actions in an environment, so as to maximize some notion of cumulative reward. Reinforcement learning differs from standard supervised learning in that correct input/output pairs which are never presented (HAYKIN, 2009). Furthermore, there is a focus on an on-line performance, which involves finding a balance between exploration (of uncharted territory) and exploitation (of current knowledge). The reinforcement learning has been applied successfully to various problems, including robot control, elevator scheduling, telecommunications, backgammon and chess (SHIM, 2000).
Cite
CITATION STYLE
Azevedo, A. (2011). Automatic Guided Vehicle Simulation in MATLAB by Using Genetic Algorithm. In MATLAB for Engineers - Applications in Control, Electrical Engineering, IT and Robotics. InTech. https://doi.org/10.5772/21364
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.