Weighted support vector machine algorithm for efficient classification and prediction of binary response data

7Citations
Citations of this article
9Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

This paper proposes a weighted Support Vector Machine (w-SVM) method for efficient class prediction in binary response data sets. The proposed method was obtained by introducing weights which utilizes the point biserial correlation between each of the predictors and the dichotomized response variable into the standard SVM algorithm to maximize the classification accuracy. The optimal value of the proposed w-SVM cost and each of the kernels parameters were determined by grid search in a 10-fold cross validation resampling method. Monte-Carlo Cross Validation method was employed to examine the predictive power of the proposed method by partitioning the data into train and test samples using different sampling splitting ratios. Application of the proposed method on the simulated data sets yielded high prediction accuracy on the test sample. Results from other performance indices further gave credence to the efficiency of the proposed method. The performance of the proposed method was compared with three of the state-of-the art machine learning methods including the standard SVM and the result showed the superiority of this method over others. Finally, the results generally show that the modified algorithm with Radial Basis Function (RBF) Kernel perform excellently and achieved the best predictive performance than any of the existing classifiers considered.

Cite

CITATION STYLE

APA

Banjoko, A. W., Yahya, W. B., Garba, M. K., & Abdulazeez, K. O. (2019). Weighted support vector machine algorithm for efficient classification and prediction of binary response data. In Journal of Physics: Conference Series (Vol. 1366). Institute of Physics Publishing. https://doi.org/10.1088/1742-6596/1366/1/012101

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free