Abstract
In this paper, we propose a simple, yet reliable methodology to expedite yield estimation and optimization of microwave structures. In our approach, the analysis of the entire response of the structure at hand (e.g., S -parameters as a function of frequency) is replaced by response surface modeling of suitably selected feature points. On the one hand, this is sufficient to determine whether a design satisfies given performance specifications. On the other, by exploiting the almost linear dependence of the feature points on the designable parameters of the structure, reliable yield estimates can be realized at low computational cost. Our methodology is verified using two examples of waveguide filters and one microstrip hairpin filter and compared with conventional Monte Carlo analysis based on repetitive electromagnetic simulations, as well as with statistical analysis exploiting linear response expansions around the nominal design. Finally, we perform yield-driven design optimizations on these filters.
Author supplied keywords
Cite
CITATION STYLE
Koziel, S., & Bandler, J. W. (2015). Rapid yield estimation and optimization of microwave structures exploiting feature-based statistical analysis. IEEE Transactions on Microwave Theory and Techniques, 63(1), 107–114. https://doi.org/10.1109/TMTT.2014.2373365
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.