The behaviour of fluid‐saturated solid foams can be very well described using multiphasic continuum mechanical models [4]. Concerning permeable soft foams, like e. g. gas‐filled open‐cell polyurethane (PU) foams, the transient compressive response is strongly influenced by the outstreaming pore‐fluid. Following this, it is the objective of the present contribution to point out the macroscopic permeability properties of soft foams including non‐linear phenomena influenced by the pore space deformation at varying flow rates. In particular, based on experimental investigations, an appropriate constitutive setting is presented considering the dependency of the permeability on the deformation state and on the seepage velocity in the sense of a modified Forchheimer ansatz. The constitutive equations are embedded into the macroscopic Theory of Porous Media (TPM), where the numerical treatment of the strongly coupled problem can effciently be performed with the finite element method (FEM). Finally, a numerical example shows the applicability of the presented approach.
CITATION STYLE
Ehlers, W., Markert, B., Diebels, S., & Nödling, A. (2003). Permeability Studies on Soft Open‐Cell Foams. PAMM, 2(1), 162–163. https://doi.org/10.1002/pamm.200310066
Mendeley helps you to discover research relevant for your work.