A Nomogram for Predicting Prostate Cancer with Lymph Node Involvement in Robot-Assisted Radical Prostatectomy Era: A Retrospective Multicenter Cohort Study in Japan (The MSUG94 Group)

6Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Background: To create a nomogram for predicting prostate cancer (PCa) with lymph node involvement (LNI) in the robot-assisted radical prostatectomy (RARP) era. Methods: A retrospective multicenter cohort study was conducted on 3195 patients with PCa who underwent RARP at nine institutions in Japan between September 2012 and August 2021. A multivariable logistic regression model was used to identify factors strongly associated with LNI. The Bootstrap-area under the curve (AUC) was calculated to assess the internal validity of the prediction model. Results: A total of 1855 patients were enrolled in this study. Overall, 93 patients (5.0%) had LNI. On multivariable analyses, initial prostate-specific antigen, number of cancer-positive and-negative biopsy cores, biopsy Gleason grade, and clinical T stage were independent predictors of PCa with LNI. The nomogram predicting PCa with LNI has been demonstrated (AUC 84%). Using a nomogram cut-off of 6%, 492 of 1855 patients (26.5%) would avoid unnecessary pelvic lymph node dissection, and PCa with LNI would be missed in two patients (0.1%). The sensitivity, specificity, and negative predictive values associated with a cutoff of 6% were 74%, 80%, and 99.6%, respectively. Conclusions: We developed a clinically applicable nomogram for predicting the probability of patients with PCa with LNI.

Cite

CITATION STYLE

APA

Kawase, M., Ebara, S., Tatenuma, T., Sasaki, T., Ikehata, Y., Nakayama, A., … Koie, T. (2022). A Nomogram for Predicting Prostate Cancer with Lymph Node Involvement in Robot-Assisted Radical Prostatectomy Era: A Retrospective Multicenter Cohort Study in Japan (The MSUG94 Group). Diagnostics, 12(10). https://doi.org/10.3390/diagnostics12102545

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free