Abstract
The nonhost resistance of Arabidopsis against hemibiotrophic fungi in the genus Colletotrichum consists of pre- and post-invasive immune responses. Previously, we reported EDR1 and PEN2 as important components of Arabidopsis pre-invasive resistance toward non-adapted Colletotrichum gloeosporioides (Cg). However, despite their defect in entry control pen2 and edr1 mutants terminated further growth of this pathogen by activating the post-invasive hypersensitive response (HR) accompanied by plant cell death. In the present study, we showed that γ-glutamylcysteine synthetase (GSH1), which is required for glutathione biosynthesis, and tryptophan (Trp) metabolism contribute to pre- and post-invasive non-host resistance against Cg. We found GSH1 to be involved in the PEN2-dependent entry control of Cg. Opposite to pen2 and edr1, gsh1 mutants failed to restrict the invasive growth of the pathogen, which demonstrated the requirement for GSH1 during post-invasive non-host resistance. Based on the infection and metabolic phenotypes of Arabidopsis mutants defective in Trp metabolism, we showed that the biosynthesis of Trp-derived phytochemicals is also essential for resistance to Cg during the post-invasive HR. By contrast, GSH1 and these metabolites are dispensable for the induction of HR cell death, which is triggered in the non-invaded mesophyll cells adjacent to the Cg-invaded epidermal cells. © 2013 Landes Bioscience.
Author supplied keywords
Cite
CITATION STYLE
Hiruma, K., Fukunaga, S., Bednarek, P., & Takano, Y. (2013). Glutathione and tryptophan metabolites are key players in Arabidopsis nonhost resistance against Colletotrichum gloeosporioides. Plant Signaling and Behavior, 8(9). https://doi.org/10.4161/psb.25603
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.