Photocatalytic utilization of CO2 in the production of value-added chemicals has presented a recent green alternative for CO2 fixation. In this regard, three FeNbO4/NH2-MIL-125(Ti) composites of different mole ratios were synthesized, characterized using Powder X-ray diffraction (PXRD), UV–vis diffuse reflectance spectroscopy (UV-Vis DRS), Brunauer–Emmett–Teller (BET), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX). PXRD patterns confirm the co-existence of the parent components in the prepared composites. Moreover, the surface area increased as the mole percent of NH2-MIL-125(Ti) in the composites increased due to the large surface area of NH2-MIL-125(Ti). Prepared composites were investigated for the photocatalytic insertion of CO2 into propylene oxide. FeNbO4(75%)/NH2-MIL-125(Ti)(25%) showed the highest percent yield of 52% compared to the other two composites. Results demonstrate the cooperative mechanism between FeNbO4 and NH2-MIL-125(Ti) and that the reaction proceeded photocatalytically.
CITATION STYLE
Ahmed, S. H., Bakiro, M., & Alzamly, A. (2021). Photocatalytic activities of fenbo4/nh2-mil-125(Ti) composites toward the cycloaddition of co2 to propylene oxide. Molecules, 26(6). https://doi.org/10.3390/molecules26061693
Mendeley helps you to discover research relevant for your work.