Deep learning-based object detection, localisation and tracking for smart wheelchair healthcare mobility

44Citations
Citations of this article
91Readers
Mendeley users who have this article in their library.

Abstract

This paper deals with the development of an Advanced Driver Assistance System (ADAS) for a smart electric wheelchair in order to improve the autonomy of disabled people. Our use case, built from a formal clinical study, is based on the detection, depth estimation, localization and tracking of objects in wheelchair’s indoor environment, namely: door and door handles. The aim of this work is to provide a perception layer to the wheelchair, enabling this way the detection of these keypoints in its immediate surrounding, and constructing of a short lifespan semantic map. Firstly, we present an adaptation of the YOLOv3 object detection algorithm to our use case. Then, we present our depth estimation approach using an Intel RealSense camera. Finally, as a third and last step of our approach, we present our 3D object tracking approach based on the SORT algorithm. In order to validate all the developments, we have carried out different experiments in a controlled indoor environment. Detection, distance estimation and object tracking are experimented using our own dataset, which includes doors and door handles.

Cite

CITATION STYLE

APA

Lecrosnier, L., Khemmar, R., Ragot, N., Decoux, B., Rossi, R., Kefi, N., & Ertaud, J. Y. (2021). Deep learning-based object detection, localisation and tracking for smart wheelchair healthcare mobility. International Journal of Environmental Research and Public Health, 18(1), 1–17. https://doi.org/10.3390/ijerph18010091

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free