Competitivity, selectivity, and heavy metals-induced alkaline cation displacement in soils

17Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The simultaneous incorporation of heavy metals into the soil is still a matter of great concern. Interaction (competitive sorption) between these metals and the soil solid phase may result in a deterioration of soil quality which relies basically on amounts of alkaline cations saturating soils sorptive complex. Results of this study indicate that Pb, Cu, C d, and Zn have induced solution pH decreases which were more intensive at highest metal loading rates. Partition parameters (Kd)-based sequences showed that Pb and Cu were more competitive than Cd and Zn and the overall selectivity sequence followed: Pb > Cu > Cd > Zn. Metal loadings and their competitive sorption have led to a strengthened displacement of alkaline cations (i.e. Ca2+, Mg2+, K+, Na+), especially of Ca2+ as a factor “stabilizing” soil sorptive complex. Such metals impact jointly with soils acidification are of great environmental concern since tremendous amounts of alkaline cations (especially Ca2+) may be potentially leached out, irrespective of the degree of soil contamination, as evidenced in the current study. High and positive ΔG values implied that the studied soils were characterized by generally low concentrations of exchangeable potassium which required high energy to get displaced (desorbed). Further studies on heavy metal uncontaminated or contaminated areas should be undertaken to provide with data which should be used for predictions on changes related to soil buffering capacity as impacted by heavy metal inputs. © 2004 Taylor & Francis Group, LLC.

Cite

CITATION STYLE

APA

Diatta, J. B., Grzebisz, W., & Wiatrowska, K. (2004). Competitivity, selectivity, and heavy metals-induced alkaline cation displacement in soils. Soil Science and Plant Nutrition, 50(6), 899–908. https://doi.org/10.1080/00380768.2004.10408552

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free