The relationship between wood growth and environmental variability at the tropical treeline of North America was investigated using automated, solar-powered sensors (a meteorological station and two dendrometer clusters) installed on Nevado de Colima, Mexico (19° 35' N, 103° 37' W, 3,760 m a.s.l.). Pure stands of Pinus hartwegii Lindl. (Mexican mountain pine) were targeted because of their suitability for tree-ring analysis in low-latitude, high-elevation, North American Monsoon environments. Stem size and hydroclimatic variables recorded at half-hour intervals were summarized on a daily timescale. Power outages, insect outbreaks, and sensor failures limited the analysis to non-consecutive months during 2001-2003 at one dendrometer site, and during 2002-2005 at the other. Combined data from the two sites showed that maximum radial growth rates occur in late spring (May), as soil temperature increases, and incoming short-wave radiation reaches its highest values. Early season (April-May) radial increment correlated directly with temperature, especially of the soil, and with solar radiation. Stem expansion at the start of the summer monsoon (June-July) was mostly influenced by moisture, and revealed a drought signal, while late season relationships were more varied. © 2010 by the authors.
CITATION STYLE
Biondi, F., & Hartsough, P. (2010). Using automated point dendrometers to analyze tropical treeline stem growth at Nevado de Colima, Mexico. Sensors, 10(6), 5827–5844. https://doi.org/10.3390/s100605827
Mendeley helps you to discover research relevant for your work.