Modeling the impact of the implementation of a submerged structure on surf zone sandbar dynamics

16Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

Coastal defense strategies based on structures are increasingly unpopular as they are costly, leave lasting scars on the landscape, and sometimes have limited effectiveness or even adverse impacts. While a clear improvement concerning aesthetic considerations using soft submerged breakwater is undeniable, their design has often focused on wave transmission processes across the crest of the structure, overlooking short- to medium-term morphodynamic responses. In this study, we used a time- and depth-averaged morphodynamic model to investigate the impact of the implementation of a submerged breakwater on surf zone sandbar dynamics at the beach of Sète, SE France. The hydrodynamic module was calibrated with data collected during a field experiment using three current profilers deployed to capture rip-cell circulation at the edge of the structure. The model showed good agreement with measurements, particularly for the longshore component of the flow (RMSE = 0.07 m/s). Results showed that alongshore differential wave breaking at the edge of the submerged breakwater drove an intense (0.4 m/s) two-dimensional circulation for lowto moderate-energy waves. Simulations indicated that inner-bar rip channel development, which was observed prior to the submerged reef implementation, was inhibited in the lee of the structure as rip-cell circulation across the inner bar disappeared owing to persistently low-energy breaking waves. The cross-shore sandbar dynamics in the lee of the structure were also impacted due to the drastic decrease of the offshore-directed flow over the inner-bar during energetic events. This paper highlights that implementation of a submerged breakwater results in larges changes in nearshore hydrodynamics that, in turn, can affect overall surf zone sandbar behavior.

Cite

CITATION STYLE

APA

Bouvier, C., Castelle, B., & Balouin, Y. (2019). Modeling the impact of the implementation of a submerged structure on surf zone sandbar dynamics. Journal of Marine Science and Engineering, 7(4). https://doi.org/10.3390/jmse7040117

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free