Exact correlators on the Wilson loop in N= 4 SYM: localization, defect CFT, and integrability

94Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We compute a set of correlation functions of operator insertions on the 1/8 BPS Wilson loop in N= 4 SYM by employing supersymmetric localization, OPE and the Gram-Schmidt orthogonalization. These correlators exhibit a simple determinant structure, are position-independent and form a topological subsector, but depend nontrivially on the ’t Hooft coupling and the rank of the gauge group. When applied to the 1/2 BPS circular (or straight) Wilson loop, our results provide an infinite family of exact defect CFT data, including the structure constants of protected defect primaries of arbitrary length inserted on the loop. At strong coupling, we show precise agreement with a direct calculation using perturbation theory around the AdS2 string worldsheet. We also explain the connection of our results to the “generalized Bremsstrahlung functions” previously computed from integrability techniques, reproducing the known results in the planar limit as well as obtaining their finite N generalization. Furthermore, we show that the correlators at large N can be recast as simple integrals of products of polynomials (known as Q-functions) that appear in the Quantum Spectral Curve approach. This suggests an interesting interplay between localization, defect CFT and integrability.

Cite

CITATION STYLE

APA

Giombi, S., & Komatsu, S. (2018). Exact correlators on the Wilson loop in N= 4 SYM: localization, defect CFT, and integrability. Journal of High Energy Physics, 2018(5). https://doi.org/10.1007/JHEP05(2018)109

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free