The estimation of variables that are normally not measured or are unmeasurable could improve control and condition monitoring of wind turbines. A cost-effective estimation method that exploits machine learning is introduced in this paper. The proposed method allows a potentially expensive sensor, for example, a LiDAR sensor, to be shared between multiple turbines in a cluster. One turbine in a cluster is equipped with a sensor and the remaining turbines are equipped with a nonlinear estimator that acts as a sensor, which significantly reduces the cost of sensors. The turbine with a sensor is used to train the estimator, which is based on an artificial neural network. The proposed method could be used to train the estimator to estimate various different variables; however, this study focuses on wind speed and aerodynamic torque. A new controller is also introduced that uses aerodynamic torque estimated by the neural network-based estimator and is compared with the original controller, which uses aerodynamic torque estimated by a conventional aerodynamic torque estimator, demonstrating improved results.
CITATION STYLE
Hur, S. H., & Reddy, Y. S. (2021). Neural network-based cost-effective estimation of useful variables to improve wind turbine control. Applied Sciences (Switzerland), 11(12). https://doi.org/10.3390/app11125661
Mendeley helps you to discover research relevant for your work.