Revolution in Detecting Tuberculosis using Radiology with Application of Deep Learning Algorithm

  • Natalia Satya P
  • Parikesit A
N/ACitations
Citations of this article
13Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Radiology is a medical examination of internal body parts using data imaging to interpret an illness. Many illnesses can be detected using this medical discipline; one of the diseases is tuberculosis caused by Mycobacterium tuberculosis bacteria. The supreme ability of Artificial Intelligence and Machine learning has amazed the radiologist in analyzing big data-based information. A better deep learning algorithm can lead radiologist to accurate results. This article will review ten (10) research papers that use a deep learning algorithm in the application to detect tuberculosis by data processing technique. The goal is to know the best type of data processing in deep learning to detect TB. Radiologi adalah pemeriksaan bagian dalam tubuh menggunakan data pencitraan untuk interpretasi suatu penyakit. Banyak penyakit dapat dideteksi menggunakan disiplin medis ini; salah satu adalah tuberkulosis yang disebabkan oleh bakteri Mycobacterium tuberculosis yang menyerang paru-paru. Ahli radiologi tertarik atas kemampuan Artificial Intelligence dan Machine Learning untuk analisis data yang akurat. Artikel ini akan mengulas sepuluh (10) makalah penelitian aplikasi algoritma deep learning untuk deteksi tuberkulosis menggunakan teknik pengolahan data.

Cite

CITATION STYLE

APA

Natalia Satya, P. G. A., & Parikesit, A. A. (2021). Revolution in Detecting Tuberculosis using Radiology with Application of Deep Learning Algorithm. Cermin Dunia Kedokteran, 48(4), 261. https://doi.org/10.55175/cdk.v48i4.1475

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free