Ischemia reperfusion dysfunction changes model-estimated kinetics of myofilament interaction due to inotropic drugs in isolated hearts

4Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: The phase-space relationship between simultaneously measured myoplasmic [Ca2+] and isovolumetric left ventricular pressure (LVP) in guinea pig intact hearts is altered by ischemic and inotropic interventions. Our objective was to mathematically model this phase-space relationship between [Ca2+] and LVP with a focus on the changes in cross-bridge kinetics and myofilament Ca2+ sensitivity responsible for alterations in Ca2+-contraction coupling due to inotropic drugs in the presence and absence of ischemia reperfusion (IR) injury. Methods: We used a four state computational model to predict LVP using experimentally measured, averaged myoplasmic [Ca2+] transients from unpaced, isolated guinea pig hearts as the model input. Values of model parameters were estimated by minimizing the error between experimentally measured LVP and model-predicted LVP. Results: We found that IR injury resulted in reduced myofilament Ca2+ sensitivity, and decreased cross-bridge association and dissociation rates. Dopamine (8 μM) reduced myofilament Ca2+ sensitivity before, but enhanced it after ischemia while improving cross-bridge kinetics before and after IR injury. Dobutamine (4 μM) reduced myofilament Ca2+ sensitivity while improving cross-bridge kinetics before and after ischemia. Digoxin (1 μM) increased myofilament Ca2+ sensitivity and cross-bridge kinetics after but not before ischemia. Levosimendan (1 μM) enhanced myofilament Ca2+ affinity and cross-bridge kinetics only after ischemia. Conclusion: Estimated model parameters reveal mechanistic changes in Ca2+-contraction coupling due to IR injury, specifically the inefficient utilization of Ca2+ for contractile function with diastolic contracture (increase in resting diastolic LVP). The model parameters also reveal drug-induced improvements in Ca2+-contraction coupling before and after IR injury. © 2006 Rhodes et al; licensee BioMed Central Ltd.

Cite

CITATION STYLE

APA

Rhodes, S. S., Camara, A. K. S., Ropella, K. M., Audi, S. H., Riess, M. L., Pagel, P. S., & Stowe, D. F. (2006). Ischemia reperfusion dysfunction changes model-estimated kinetics of myofilament interaction due to inotropic drugs in isolated hearts. BioMedical Engineering Online, 5. https://doi.org/10.1186/1475-925X-5-16

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free