Multiple vacuoles in impaired tonoplast trafficking3 mutants are independent organelles

8Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Plant vacuoles are essential and dynamic organelles, and mechanisms of vacuole biogenesis and fusion are not well characterized. We recently demonstrated that Wortmannin, an inhibitor of Phosphatidylinositol 3-Kinase (PI3K), induces the fusion of plant vacuoles both in roots of itt3/vti11 mutant alleles and in guard cells of wild type Arabidopsis and Fava bean. Here we used Fluorescence Recovery After Photobleaching (FRAP) to demonstrate that the vacuoles in itt3/vti11 are independent organelles. Furthermore, we used fluorescent protein reporters that bind specifically to Phosphatidylinositol 3-Phosphate (PtdIns(3)P) or PtdIns(4)P to show that Wortmannin treatments that induce the fusion of vti11 vacuoles result in the loss of PtdIns(3)P from cellular membranes. These results provided supporting evidence for a critical role of PtdIns(3)P in vacuole fusion in roots and guard cells.

Cite

CITATION STYLE

APA

Zheng, J., Han, S. W., Munnik, T., & Rojas-Pierce, M. (2014). Multiple vacuoles in impaired tonoplast trafficking3 mutants are independent organelles. Plant Signaling and Behavior, 9(10). https://doi.org/10.4161/psb.29783

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free