A cytosolic class II small heat shock protein, PfHSP17.2, confers resistance to heat, cold, and salt stresses in transgenic Arabidopsis

22Citations
Citations of this article
21Readers
Mendeley users who have this article in their library.

Abstract

We cloned and characterized the full-length coding sequence of a small heat shock (sHSP) gene, PfHSP17.2, from Primula forrestii leaves following heat stress treatment. Homology and phylogenetic analysis suggested that PfHSP17.2 is a cytosolic class II sHSP, which was further supported by the cytosolic localization of transient expression of PfHSP17.2 fused with green fluorescent protein reporter. Expression analysis showed that PfHSP17.2 was highly inducible by heat stress in almost all the vegetative and generative tissues and was expressed under salt, cold, and oxidative stress conditions as well. Moreover, the expression of PfHSP17.2 in P. forrestii was detected in certain developmental growth stages. Transgenic Arabidopsis thaliana constitutively expressing PfHSP17.2 displayed increased thermotolerance and higher resistance to salt and cold compared with wild type plants. It is suggested that PfHSP17.2 plays a key role in heat and other abiotic stresses.

Author supplied keywords

Cite

CITATION STYLE

APA

Zhang, L., Hu, W., Gao, Y., Pan, H., & Zhang, Q. (2018). A cytosolic class II small heat shock protein, PfHSP17.2, confers resistance to heat, cold, and salt stresses in transgenic Arabidopsis. Genetics and Molecular Biology, 41(3), 649–660. https://doi.org/10.1590/1678-4685-gmb-2017-0206

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free