RSSI-Based MAC-Layer Spoofing Detection: Deep Learning Approach †

9Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

Abstract

In some wireless networks Received Signal Strength Indicator (RSSI) based device profiling may be the only viable approach to combating MAC-layer spoofing attacks, while in others it can be used as a valuable complement to the existing defenses. Unfortunately, the previous research works on the use of RSSI-based profiling as a means of detecting MAC-layer spoofing attacks are largely theoretical and thus fall short of providing insights and result that could be applied in the real world. Our work aims to fill this gap and examine the use of RSSI-based device profiling in dynamic real-world environments/networks with moving objects. The main contributions of our work and this paper are two-fold. First, we demonstrate that in dynamic real-world networks with moving objects, RSSI readings corresponding to one fixed transmitting node are neither stationary nor i.i.d., as generally has been assumed in the previous literature. This implies that in such networks, building an RSSI-based profile of a wireless device using a single statistical/ML model is likely to yield inaccurate results and, consequently, suboptimal detection performance against adversaries. Second, we propose a novel approach to MAC-layer spoofing detection based on RSSI profiling using multi-model Long Short-Term Memory (LSTM) autoencoder—a form of deep recurrent neural network. Through real-world experimentation we prove the performance superiority of this approach over some other solutions previously proposed in the literature. Furthermore, we demonstrate that a real-world defense system using our approach has a built-in ability to self-adjust (i.e., to deal with unpredictable changes in the environment) in an automated and adaptive manner.

Cite

CITATION STYLE

APA

Madani, P., & Vlajic, N. (2021). RSSI-Based MAC-Layer Spoofing Detection: Deep Learning Approach †. Journal of Cybersecurity and Privacy, 1(3), 453–469. https://doi.org/10.3390/jcp1030023

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free