TREX1 as a Novel Immunotherapeutic Target

41Citations
Citations of this article
76Readers
Mendeley users who have this article in their library.

Abstract

Mutations in the TREX1 3’ → 5’ exonuclease are associated with a spectrum of autoimmune disease phenotypes in humans and mice. Failure to degrade DNA activates the cGAS-STING DNA-sensing pathway signaling a type-I interferon (IFN) response that ultimately drives immune system activation. TREX1 and the cGAS-STING DNA-sensing pathway have also been implicated in the tumor microenvironment, where TREX1 is proposed to degrade tumor-derived DNA that would otherwise activate cGAS-STING. If tumor-derived DNA were not degraded, the cGAS-STING pathway would be activated to promote IFN-dependent antitumor immunity. Thus, we hypothesize TREX1 exonuclease inhibition as a novel immunotherapeutic strategy. We present data demonstrating antitumor immunity in the TREX1 D18N mouse model and discuss theory surrounding the best strategy for TREX1 inhibition. Potential complications of TREX1 inhibition as a therapeutic strategy are also discussed.

Cite

CITATION STYLE

APA

Hemphill, W. O., Simpson, S. R., Liu, M., Salsbury, F. R., Hollis, T., Grayson, J. M., & Perrino, F. W. (2021). TREX1 as a Novel Immunotherapeutic Target. Frontiers in Immunology, 12. https://doi.org/10.3389/fimmu.2021.660184

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free