Effect of Grinding Process Parameters and Storage Time on Extraction of Antioxidants from Ginger and Nutmeg

6Citations
Citations of this article
24Readers
Mendeley users who have this article in their library.

Abstract

The aim of this study was to optimize the grinding process parameters (mesh size of grinder sieve (X1), the peripheral velocity of the grinding wheels (X2)), and the storage time (X3) of ground ginger rhizome and nutmeg to obtain ethanol and ethanol-water extracts with improved antioxidant properties. The optimal conditions were estimated using response surface methodology (RSM) based on a three-variable Box–Behnken design (BBD) in order to maximize the antioxidant capacity (AC) determined by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) and 2,2’-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) methods, and the total phenolic content (TPC) was determined by the Folin–Ciocalteu (F–C) method in spice extracts. Additionally, the phenolic acid profiles in extracts from optimized conditions were analyzed using ultra-performance liquid chromatography (UPLC). It was found that the optimal preparation conditions for antioxidant extraction were dependent on the spice source and solvent type. The best antioxidant properties in nutmeg extracts were achieved for X1 = 1.0 mm, X2 = 40–41 Hz and X3 = 7 days, whereas the optimized parameters for ginger extracts were more varied (1.0–2.0 mm, 43–50 Hz and 1–9 days, respectively). The ginger extracts contained 1.5–1.8 times more phenolic acids, and vanillic, ferulic, gallic, and p-OH-benzoic acids were dominant. In contrast, the nutmeg extracts were rich in protocatechuic, vanillic, and ferulic acids.

Cite

CITATION STYLE

APA

Poliński, S., Topka, P., Tańska, M., Kowalska, S., Czaplicki, S., & Szydłowska-Czerniak, A. (2022). Effect of Grinding Process Parameters and Storage Time on Extraction of Antioxidants from Ginger and Nutmeg. Molecules, 27(21). https://doi.org/10.3390/molecules27217395

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free