BEAF (Boundary Element-Associated Factor) was originally identified as a Drosophila melanogaster chromatin domain insulator-binding protein, suggesting a role in gene regulation through chromatin organization and dynamics. Genome-wide mapping found that BEAF usually binds near transcription start sites, often of housekeeping genes, suggesting a role in promoter function. This would be a nontraditional role for an insulator-binding protein. To gain insight into molecular mechanisms of BEAF function, we identified interacting proteins using yeast two-hybrid assays. Here, we focus on the transcription factor Serendipity d (Sry-d). Interactions were confirmed in pull-down experiments using bacterially expressed proteins, by bimolecular fluorescence complementation, and in a genetic assay in transgenic flies. Sry-d interacted with promoter-proximal BEAF both when bound to DNA adjacent to BEAF or. 2-kb upstream to activate a reporter gene in transient transfection experiments. The interaction between BEAF and Sry-d was detected using both a minimal developmental promoter (y) and a housekeeping promoter (RpS12), while BEAF alone strongly activated the housekeeping promoter. These two functions for BEAF implicate it in playing a direct role in gene regulation at hundreds of BEAF-associated promoters.
CITATION STYLE
Dong, Y., Satya Prakash Avva, S. V., Maharjan, M., Jacobi, J., & Hart, C. M. (2020). Promoter-proximal chromatin domain insulator protein BeaF mediates local and long-range communication with a transcription factor and directly activates a housekeeping promoter in Drosophila. Genetics, 215(1), 89–101. https://doi.org/10.1534/genetics.120.303144
Mendeley helps you to discover research relevant for your work.