A Novel Approach for UAV Image Crack Detection

21Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.

Abstract

Cracks are the most significant pre-disaster of a road, and are also important indicators for evaluating the damage level of a road. At present, road crack detection mainly depends on manual detection and road detection vehicles, with which the safety of detection workers is not guaranteed and the detection efficiency is low. A road detection vehicle can speed up the efficiency to a certain extent, but the automation level is low and it is easy to block the traffic. Unmanned Aerial Vehicles (UAV) have the characteristics of low energy consumption and easy control. If UAV technology can be applied to road crack detection, it will greatly improve the detection efficiency and produce huge economic benefits. In order to find a way to apply UAV to road crack detection, we developed a new technique for road crack detection based on UAV pictures, called DenxiDeepCrack, which is a trainable deep convolutional neural network for automatic crack detection which utilises learning high-level features for crack representation. In addition, we create a new dataset based on drone images called UCrack 11 to enrich the crack database of drone images for future crack detection research.

Cite

CITATION STYLE

APA

Li, Y., Ma, J., Zhao, Z., & Shi, G. (2022). A Novel Approach for UAV Image Crack Detection. Sensors, 22(9). https://doi.org/10.3390/s22093305

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free