Automation detection of driver fatigue using visual behavior variables

4Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.
Get full text

Abstract

To examine the correlation of driver visual behaviors and subjective levels of fatigue, a total of 36 commercial drivers were invited to participate in 2-h, 3-h, and 4-h naturalistic driving tests during which their eye fixation, saccade, blinking variables, and self-awareness of their fatigue levels were recorded. Then, one-way ANOVA was applied to analyze the variations of each variable among different age groups over varying time periods. The statistical analysis revealed that driving duration had a significant effect on the variation of visual behaviors and feelings of fatigue. After 2h of driving, only the average closure duration value and subjective level of fatigue had an increase of one-fifth or more. After 4h of driving, however, all these variables had a significant change except for the number of saccades and pupil diameter measurements. Particularly, driver saccadic eye movement was more sensitive to driving fatigue, and the elderly were more likely to be affected by the duration of the drive. Finally, a predictor of driver fatigue was determined to detect the real-time level of fatigue and alert at the critical moment.

Cite

CITATION STYLE

APA

Wang, Y., & Ma, J. (2018). Automation detection of driver fatigue using visual behavior variables. Archives of Civil Engineering, 64(2), 175–185. https://doi.org/10.2478/ace-2018-0023

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free