Dynamic Interfacial Stability Confirmed by Microscopic Optical Operando Experiments Enables High-Retention-Rate Anode-Free Na Metal Full Cells

44Citations
Citations of this article
62Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Rechargeable alkali metal anodes hold the promise to significantly increase the energy density of current battery technologies. But they are plagued by dendritic growths and solid-electrolyte interphase (SEI) layers that undermine the battery safety and cycle life. Here, a non-porous ingot-type sodium (Na) metal growth with self-modulated shiny-smooth interfaces is reported for the first time. The Na metal anode can be cycled reversibly, without forming whiskers, mosses, gas bubbles, or disconnected metal particles that are usually observed in other studies. The ideal interfacial stability confirmed in the microcapillary cells is the key to enable anode-free Na metal full cells with a capacity retention rate of 99.93% per cycle, superior to available anode-free Na and Li batteries using liquid electrolytes. Contradictory to the common beliefs established around alkali metal anodes, there is no repeated SEI formation on or within the sodium anode, supported by the X-ray photoelectron spectroscopy elemental depth profile analyses, electrochemical impedance spectroscopy diagnosis, and microscopic imaging.

Cite

CITATION STYLE

APA

Ma, B., Lee, Y., & Bai, P. (2021). Dynamic Interfacial Stability Confirmed by Microscopic Optical Operando Experiments Enables High-Retention-Rate Anode-Free Na Metal Full Cells. Advanced Science, 8(12). https://doi.org/10.1002/advs.202005006

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free