Characteristics of carbonaceous aerosol in PM2.5 at Wanzhou in the Southwest of China

35Citations
Citations of this article
37Readers
Mendeley users who have this article in their library.

Abstract

Hourly organic carbon (OC) and elemental carbon (EC) concentrations in PM2.5 were measured from June 2013 to May 2014 in Wanzhou, the second largest city in the Chongqing Municipality, in the southwest of China. Results show that the annual average concentrations of OC and EC were 13.16 ± 7.98 and 3.12 ± 1.51 μgC·m-3, respectively. Clear seasonal variations of OC and EC concentrations were observed, with their concentrations at minima in summer and maxima in winter. The diel concentration profile of OC and EC presented a bimodal pattern, which was attributed to the cooperative effects of local meteorological conditions and source emissions. The daily average OC/EC ratio ranged from 2.05 to 8.17 with an average of 4.15 for the whole study period. Strong correlations between OC and EC were found in winter and spring, indicating their common sources, while their correlations were poorer in summer and autumn, indicating that the influence of biogenic emissions and secondary organic carbon (SOC) were significant during those seasons. The estimated SOC concentrations were 2.19 ± 1.55, 7.66 ± 5.89, 5.79 ± 3.51, and 3.43 ± 2.26 μgC·m-3, accounting for 29.2%, 52.7%, 27.4%, and 30.5% of total organic carbon in summer, autumn, winter, and spring, respectively. The analysis of back trajectories suggested that high PM2.5, OC, and EC concentrations were associated with air masses originating from or passing over several industrial centers and urban areas in western and northwestern China. Air trajectories from the southeast with short pathways were the dominant trajectories arriving at Wanzhou, indicating that local sources had a big influence on PM2.5, OC, and EC concentrations.

Cite

CITATION STYLE

APA

Huang, Y., Liu, Y., Zhang, L., Peng, C., & Yang, F. (2018). Characteristics of carbonaceous aerosol in PM2.5 at Wanzhou in the Southwest of China. Atmosphere, 9(2). https://doi.org/10.3390/atmos9020037

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free