Abstract
With several bands covering iron-bearing mineral spectral features, Sentinel-2 has advantages for iron mapping. However, due to the inconsistent spatial resolution, the sensitivity of Sentinel-2 data to detect iron-bearing minerals may be decreased by excluding the 60 m bands and neglecting the 20 m vegetation red-edge bands. Hence, the capability of Sentinel-2 for iron-bearing minerals mapping were assessed by applying a multivariate (MV) method to pansharpen Sentinel-2 data. Firstly, the Sentinel-2 bands with spatial resolution 20 m and 60 m (except band 10) were pansharpened to 10 m. Then, extraction of iron-bearing minerals from the MV-fused image was explored in the Cuprite area, Nevada, USA. With the complete set of 12 bands with a fine spatial resolution, three band ratios (6/1, 6/8A and (6 + 7)/8A) of the fused image were proposed for the extraction of hematite + goethite, hematite + jarosite and the mixture of iron-bearing minerals, respectively. Additionally, band ratios of Sentinel-2 data for iron-bearing minerals in previous studies were modified with substitution of narrow near infrared band 8A for band 8. Results demonstrated that the capability for detection of iron-bearing minerals using Sentinel-2 data was improved by consideration of two extra bands and the unified fine spatial resolution.
Author supplied keywords
Cite
CITATION STYLE
Ge, W., Cheng, Q., Jing, L., Wang, F., Zhao, M., & Ding, H. (2020). Assessment of the capability of sentinel-2 imagery for iron-bearing minerals mapping: A case study in the cuprite area, nevada. Remote Sensing, 12(18). https://doi.org/10.3390/RS12183028
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.