Carbon nitride photocatalysts for water splitting: A computational perspective

119Citations
Citations of this article
139Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We study the thermodynamic ability of carbon nitride materials to act as water splitting photocatalysts using a computational approach that involves a combination of density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations on cluster models of both triazine- and heptazine-based structures. We first use TD-DFT to calculate the absorption spectra of the different cluster models and compare these spectra to those measured experimentally and then calculate using DFT and TD-DFT the reduction potentials of the free electron, free hole, and exciton in these models. We predict that all classes of carbon nitride structures considered should thermodynamically be able to reduce protons and oxidize water. We further provide evidence for the hypothesis that the experimental lack of overall water splitting activity for pure carbon nitride arises from the fact that water oxidation is a four-hole reaction and hence very susceptible to competition with electron-hole recombination. Finally, we propose that the recently reported overall water splitting activity of carbon nitride loaded with polypyrrole nanoparticles arises from a junction formed at the interface of both materials, which assists in keeping electrons and holes apart.

Cite

CITATION STYLE

APA

Butchosa, C., Guiglion, P., & Zwijnenburg, M. A. (2014, October 30). Carbon nitride photocatalysts for water splitting: A computational perspective. Journal of Physical Chemistry C. American Chemical Society. https://doi.org/10.1021/jp507372n

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free