Abstract
Needles of evergreen conifers are not only photosynthetic organs, but they may also serve as storage sites for carbohydrates and nutrients. Since nitrogen is both a component of photosynthetically active molecules and a nutrient stored in the needles and mobilized for shoot regrowth, we searched for evidence of a trade-off between needle N storage and photosynthetic capacity. Using sequential sampling, we tracked seasonal patterns in needle structure, nitrogen (Nmass) and carbohydrate concentration, and gas exchange in needles of all age classes (current-year, 1- and 2-year-old) present on Pinus sylvestris trees. In both 1- and 2-year-old needles, Nmass increased slightly in the spring, fell subsequently after the onset of shoot growth, followed by replenishment in 1-year-old and further decline until abscission in 2-year-old needles. However, only 2-year-old needles showed a positive correlation between Nmass and photosynthesis, consistent with their overall lower N level that indicated a tighter N budget. The 2-year-old needles had a higher leaf mass per area and lower photosynthesis in comparison with 1-year-old needles. They also had a lower photosynthetic nitrogen use efficiency, which suggests that in addition to N withdrawal, structural change and biochemical modifications might have contributed to photosynthetic decline in the final year of needle life. Thus, whereas seasonal N mobilization observed in 1-year-old needles did not seem to interfere with photosynthetic potential, resorption of N could have contributed to gradual photosynthetic decline in 2-year-old needles.
Author supplied keywords
Cite
CITATION STYLE
Wyka, T. P., Żytkowiak, R., & Oleksyn, J. (2016). Seasonal dynamics of nitrogen level and gas exchange in different cohorts of Scots pine needles: a conflict between nitrogen mobilization and photosynthesis? European Journal of Forest Research, 135(3), 483–493. https://doi.org/10.1007/s10342-016-0947-x
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.