EDTA etching: A simple way for regulating the traps, size and aqueous-dispersibility of Cr 3+ -doped zinc gallate

31Citations
Citations of this article
10Readers
Mendeley users who have this article in their library.

Abstract

Traps, size and aqueous-dispersibility are the most important parameters that affect the features and applications of persistent luminescent nanoparticles (PLNPs). However, simultaneous controlling of these parameters is rather difficult and has not been reported yet. We present the first exploration on adjusting the traps, size and aqueous-dispersibility of PLNPs via simple ethylenediaminetetraacetate (EDTA) etching. Cr 0.0043+ :ZnGa 2 O 4 (ZGO) was used as the PLNP model. EDTA etching of the sintered ZGO results in effective reduction of the size and great improvement in the aqueous-dispersibility. In addition, EDTA etching alters the density of mediate traps and generates new deep traps, thus achieving the massive production of (ultra)small ZGO-EDTA with fine aqueous-dispersibility, suitable mediate/deep traps and superlong bright afterglows (51 days). As EDTA can interact with most metals, this simple EDTA etching strategy is prospectively amenable to other PLNPs, and the resulting PLNPs-EDTA have wide applications in both biological field and information storage.

Cite

CITATION STYLE

APA

Wang, H. F., Chen, X., Feng, F., Ji, X., & Zhang, Y. (2018). EDTA etching: A simple way for regulating the traps, size and aqueous-dispersibility of Cr 3+ -doped zinc gallate. Chemical Science, 9(48), 8923–8929. https://doi.org/10.1039/c8sc04173c

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free