Abstract
We developed a system that classifies masses or microcalcifications observed in a mammogram as either benign or malignant. The system assumes prior manual segmentation of the image. The image segment is then processed for its statistical parameters and applied to a computational intelligence system for classification. We used Cartesian Genetic Programming Evolved Artificial Neural Network (CGPANN) for classification. To train and test our system we selected 2000 mammogram images with equal number of benign and malignant cases from the wellknown Digital Database for Screening Mammography (DDSM). To find the input parameters for our network we exploited the overlay files associated with the mammograms. These files mark the boundaries of masses or microcalcifications. A Gray Level Co-occurrence matrix (GLCM) was developed for a rectangular region enclosing each boundary and its statistical parameters computed. Five experiments were conducted in each fold of a 10-fold cross validation strategy. Testing accuracy of 100% was achieved in some experiments.
Author supplied keywords
Cite
CITATION STYLE
Ahmad, A. M., Khan, G. M., & Mahmud, S. A. (2014). Classification of mammograms using Cartesian Genetic Programming Evolved Artificial Neural Networks. IFIP Advances in Information and Communication Technology, 436, 203–213. https://doi.org/10.1007/978-3-662-44654-6_20
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.