COX-2 modulates mammary tumor progression in response to collagen density

87Citations
Citations of this article
116Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Background: High breast density is linked to an increased risk of breast cancer, and correlates with changes in collagen. In a mouse model of mammary carcinoma in the context of increased collagen deposition, the MMTV-PyMT/Col1a1tm1jae, there is accelerated mammary tumor formation and progression. Previous gene expression analysis suggests that increased collagen density elevates expression of PTGS2 (prostaglandin-endoperoxide synthase 2), the gene for cyclooxygenase-2 (COX-2). Methods: To understand the role of COX-2 in tumor progression within a collagen-dense microenvironment, we treated MMTV-PyMT or MMTV-PyMT/Col1a1tm1jae tumors prior to and after tumor formation. Animals received treatment with celecoxib, a specific COX-2 inhibitor, or placebo. Mammary tumors were examined for COX-2, inflammatory and stromal cell components, and collagen deposition through immunohistochemical analysis, immunofluorescence, multiplex cytokine ELISA and tissue imaging techniques. Results: PyMT/Col1a1tm1jae tumors were larger, more proliferative, and expressed higher levels of COX-2 and PGE2 than PyMT tumors in wild type (WT) mice. Treatment with celecoxib significantly decreased the induced tumor size and metastasis of the PyMT/Col1a1 tumors, such that their size was not different from the smaller PyMT tumors. Celecoxib had minimal effect on the PyMT tumors. Celecoxib decreased expression levels of COX-2, PGE2, and Ki-67. Several cytokines were over-expressed in PyMT/Col1a1 compared to PyMT, and celecoxib treatment prevented their over-expression. Furthermore, macrophage and neutrophil recruitment were enhanced in PyMT/Col1a1 tumors, and this effect was inhibited by celecoxib. Notably, COX-2 inhibition reduced overall collagen deposition. Finally, when celecoxib was used prior to tumor formation, PyMT/Col1a1 tumors were fewer and smaller than in untreated animals. Conclusion: These findings suggest that COX-2 has a direct role in modulating tumor progression in tumors arising within collagen-dense microenvironments, and suggest that COX-2 may be an effective therapeutic target for women with dense breast tissue and early-stage breast cancer.

Cite

CITATION STYLE

APA

Esbona, K., Inman, D., Saha, S., Jeffery, J., Schedin, P., Wilke, L., & Keely, P. (2016). COX-2 modulates mammary tumor progression in response to collagen density. Breast Cancer Research, 18(1). https://doi.org/10.1186/s13058-016-0695-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free