Nanostructured hydroxyapatite (HAP) and three multiple substituted HAPs, containing Mg, Zn, Sr and Si were synthesized by a wet precipitation method The presence of the HAP lattice as unique crystalline phase was established by XRD and by FTIR spectroscopy. The chemical composition was confirmed by SEM-EDX. The TEM, SEM and AFM imaging showed the morphology of these biomaterials. The elements release in water and in simulated body fluid (SBF) was monitored in time from 1 to 90 days, by using inductively coupled plasma optical emission spectrometry (ICP-OES). The results are important for the future use of these hydroxyapatite biomaterials, as bone substitutes or coatings on metallic implants, able to release essential physiological elements, both in vitro and in vivo, with great impact in orthopedics and dentistry.
CITATION STYLE
Cadar, O., Balint, R., Tomoaia, G., Florea, D., Petean, I., Mocanu, A., … Tomoaia-Cotisel, M. (2017). Behavior of multisubstituted hydroxyapatites in water and simulated body fluid. Studia Universitatis Babes-Bolyai Chemia, 62(4), 269–281. https://doi.org/10.24193/subbchem.2017.4.23
Mendeley helps you to discover research relevant for your work.