Performing learning analytics via generalised mixed-effects trees

19Citations
Citations of this article
84Readers
Mendeley users who have this article in their library.

Abstract

Nowadays, the importance of educational data mining and learning analytics in higher education institutions is being recognised. The analysis of university careers and of student dropout prediction is one of the most studied topics in the area of learning analytics. From the perspective of estimating the likelihood of a student dropping out, we propose an innovative statistical method that is a generalisation of mixed-effects trees for a response variable in the exponential family: generalised mixed-effects trees (GMET). We performed a simulation study in order to validate the performance of our proposed method and to compare GMET to classical models. In the case study, we applied GMET to model undergraduate student dropout in different courses at Politecnico di Milano. The model was able to identify discriminating student characteristics and estimate the effect of each degree-based course on the probability of student dropout.

Cite

CITATION STYLE

APA

Fontana, L., Masci, C., Ieva, F., & Paganoni, A. M. (2021). Performing learning analytics via generalised mixed-effects trees. Data, 6(7). https://doi.org/10.3390/data6070074

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free