Cd2+ extrusion by P-type Cd2+-ATPase of Staphylococcus aureus 17810R via energy-dependent Cd2+/H+ exchange mechanism

7Citations
Citations of this article
11Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Cd2+ is highly toxic to Staphylococcus aureus since it blocks dithiols in cytoplasmic 2-oxoglutarate dehydrogenase complex (ODHC) participating in energy conservation process. However, S. aureus 17810R is Cd2+-resistant due to possession of cadA-coded Cd2+ efflux system, recognized here as P-type Cd2+-ATPase. This Cd2+ pump utilizing cellular energy—ATP, ∆μH+ (electrochemical proton potential) and respiratory protons, extrudes Cd2+ from cytoplasm to protect dithiols in ODHC, but the mechanism of Cd2+ extrusion remains unknown. Here we propose that two Cd2+ taken up by strain 17810R via Mn2+ uniporter down membrane potential (∆ψ) generated during glutamate oxidation in 100 mM phosphate buffer (high PiB) are trapped probably by high affinity sites in cytoplasmic domain of Cd2+-ATPase, forming SCdS. This stops Cd2+ transport towards dithiols in ODHC, allowing undisturbed NADH production, its oxidation and energy conservation, while ATP could change orientation of SCdS towards facing transmembrane channel. Now, increased number of Pi-dependent protons pumped electrogenically via respiratory chain and countertransported through the channel down ∆ψ, extrude two trapped cytoplasmic Cd2+, which move to low affinity sites, being then extruded into extracellular space via ∆ψ-dependent Cd2+/H+ exchange. In 1 mM phosphate buffer (low PiB), external Cd2+ competing with decreased number of Pi-dependent protons, binds to ψs of Cd2+-ATPase channel, enters cytoplasm through the channel down ∆ψ via Cd2+/Cd2+ exchange and blocks dithiols in ODHC. However, Mg2+ pretreatment preventing external Cd2+ countertransport through the channel down ∆ψ, allowed undisturbed NADH production, its oxidation and extrusion of two cytoplasmic Cd2+ via Cd2+/H+ exchange, despite low PiB.

Cite

CITATION STYLE

APA

Tynecka, Z., Malm, A., & Goś-Szcześniak, Z. (2016). Cd2+ extrusion by P-type Cd2+-ATPase of Staphylococcus aureus 17810R via energy-dependent Cd2+/H+ exchange mechanism. BioMetals, 29(4), 651–663. https://doi.org/10.1007/s10534-016-9941-5

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free