Abstract
We develop a physical model to study the pressure of the source proton plasma in the inner heliosheath based on the IBEX Energetic Neutral Atom (ENA) spectra. A multiple linear regression technique is used to parameterize the proton distribution function, by connecting the observed ENA flux spectrum from IBEX-Hi with the power-law of the model proton distribution. We calculate the partial pressure over the measured energy range, using (1) a non-parametric method by integrating the observed ENA flux, and (2) a parametric method by integrating the modeled distribution of protons in the inner heliosheath. The two sky maps of the parametric and non-parametric partial pressures are nearly identical, owing to their power-law distributions at high energies; the kappa distribution is such a function that can be reduced to a power-law in the IBEX-Hi energy range. The slight differences between the two partial pressures may indicate protons that are not described by the kappa distribution, and instead, involve newer or "immature" (spherical shell) pick-up proton distributions. Ultimately, however, these become incorporated with the solar wind into one single proton population described by a kappa distribution. Moreover, we derive analytically (1) the ENA flux spectra, which suggests that this flux maximizes at ∼30 eV, and (2) the differential pressure, which provides estimates of the partial pressures outside of those measured by IBEX-Hi. Under the assumptions of the modeled ENA spectra, the Ribbon emissions appear to be primarily limited to the energy ranges of IBEX-Lo and IBEX-Hi. © 2013. The American Astronomical Society. All rights reserved..
Author supplied keywords
Cite
CITATION STYLE
Livadiotis, G., McComas, D. J., Schwadron, N. A., Funsten, H. O., & Fuselier, S. A. (2013). Pressure of the proton plasma in the inner heliosheath. Astrophysical Journal, 762(2). https://doi.org/10.1088/0004-637X/762/2/134
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.